
Cryptographic hash functions
from expander graphs

Denis Charles, Microsoft Research
Eyal Goren, McGill University
Kristin Lauter, Microsoft Research

2nd NIST Hash Function Workshop
August 24-25, 2006

Status quo

“ WELL WE KNOW WHERE WE'RE GOIN‘
BUT WE DON'T KNOW WHERE WE'VE BEEN

AND WE KNOW WHAT WE'RE KNOWIN'
GIVE US TIME TO WORK IT OUT”

─Talking Heads,
Road to Nowhere

Related work: (provable hashes)

VSH [Contini, Lenstra, Steinfeld, 2005]
ECDLP-based [?]
Zemor-Tillich `94, Hashing with SL2(Z)
Joye-Quisquater, `97,
Quisquater 2004, Liardet 2004
Goldreich, 2000, One-way functions from
LPS graphs

Construction of the hash function:

k-regular graph G
Each vertex in the graph has a label

Input: a bit string
Bit string is divided into blocks
Each block used to determine which edge to
follow for the next step in the graph
No backtracking allowed!

Output: label of the final vertex of the walk

Simple idea

Random walks on expander graphs are a
good source of pseudo-randomness
Are there graphs such that finding collisions
is hard? (i.e. finding distinct paths between
vertices is hard)
Bad idea: hypercube (routing is easy, can be
read off from the labels)

What kind of graph to use?

Random walks on expander graphs mix
rapidly: log(n) steps to a random vertex
Ramanujan graphs are optimal expanders
To find a collision: find two distinct walks of
the same length which end at same vertex,
which you can easily do if you can find cycles

Example: graph of supersingular
elliptic curves modulo p (Pizer)

Vertices: supersingular elliptic curves mod p
Edges: degree ℓ isogenies between them
ℓ+1 – regular
Graph is Ramanujan
vertices ~ p/12
p ~ 256 bits

Collision resistance

Finding collisions reduces to finding isogenies
between elliptic curves:
Finding a collision finding 2 distinct paths
between any 2 vertices (or a cycle)
Finding a pre-image finding 1 path between
2 given vertices
O(√p) birthday attack to find a collision

One step of the walk:

E1 : y2 = x3 +a4x+a6

j(E1)=1728*4a4
3/(a4

3+27a6
2)

2-torsion point Q = (r, 0)
E2 = E/Q (quotient of groups)
E2 : y2 = x3 − (4a4 + 15r2)x + (8a6 − 14r3).
E1 E2

(x, y) (x +(3r2 + a4)/(x-r), y − (3r2 + a4)y/(x-r)2)

Timings

p 192-bit prime and ℓ = 2
Time per input bit is 3.9 × 10−5 secs.
Hashing bandwidth: 25.6 Kbps.
p 256-bit prime
Time per input bit is 7.6 × 10−5 secs or
Hashing bandwidth: 13.1 Kbps.
64-bit AMD Opteron 252 2.6Ghz machine.

Other graphs

Vary the isogeny degree
Ordinary elliptic curves
– Same efficiency as supersingular graph
– Finding isogenies: p3/2log(p) [Galbraith]
– Isogeny graph with fixed degree not connected

Lubotzky-Phillips-Sarnak Cayley graph
– random walk is efficient to implement
– Ramanujan graph
– Different problem for finding collisions

	Cryptographic hash functions from expander graphs
	Status quo
	Related work: (provable hashes)
	Construction of the hash function:
	Simple idea
	What kind of graph to use?
	Example: graph of supersingular elliptic curves modulo p (Pizer)
	Collision resistance
	One step of the walk:
	Timings
	Other graphs

